Curriculum Vitae

Employment
  • Adjunct Professor, University of Calgary, 2017 - 2020.
  • Lecturer, University of Toronto (Mississauga), 2018 - 2019.
  • Instructor / Senior Instructor, University of Calgary, 2013 - 2017. 

Education

Interests
  •  Mathematics education.
  •  Graph Theory.
  •  Linear algebra.
  •  Applications in geophysics and brain networks.
 
Articles
  •  M. Cavers and K. Seyffarth, Reconfiguring vertex colourings of 2-trees, 53 pages, to appear in Ars Mathematica Contemporanea.
  •  M. Cavers, K. Seyffarth and E. White, Distinguishing chromatic numbers of complements of Cartesian products of complete graphs, Discrete Mathematics, Vol 341 (2018), 2431-2441.
  •  M. Cavers and J. Ling, Confidence weighting procedures for multiple-choice tests, ICSA Book Series in Statistics: Advanced Statistical Methods in Data Science (Chapter 10), Springer, 2016.
  •  K. Vasudevan, M. Cavers, and A. Ware, Earthquake sequencing: Chimera states with Kuramoto model dynamics on directed graphs, Nonlinear Processes in Geophysics, 22 (2015), 499-512.
  •  J. Ling and M. Cavers, Student-weighted multiple-choice tests, Proceedings of the 2015 UC Postsecondary Conference on Learning and Teaching, May 2015. Published in PRISM: University of Calgary Digital Repository.
  •  M. Cavers and K. Vasudevan, Earthquake sequencing: Analysis of time series constructed from the Markov chain model, Nonlinear Processes in Geophysics, 22 (2015), 589-599.
  •  M. Cavers and K. Vasudevan, Spatio-Temporal Complex Markov Chain (SCMC) Model using directed graphs: Earthquake sequencing, Pure and Applied Geophysics, Vol 172, Issue 2, (2014), 225-241.
  •  B. Ahmadi, F. Alinagipour, M. Cavers, S. Fallat, K. Meagher, and S. Nasserasr, Minimum number of distinct eigenvalues of graphs, Electronic Journal of Linear Algebra, Vol. 26 (2013), 673-691.
  •  M. Cavers and K. Seyffarth, Graphs with large distinguishing chromatic number, Electronic Journal of Combinatorics, Vol. 20(1) (2013) #P19.
  •  M. Cavers, C. Garnett, I-J Kim, D. Olesky, P. van den Driessche and K. Vander Meulen, Techniques for identifying inertially arbitrary patterns, Electronic Journal of Linear Algebra, Vol. 26 (2013), 71-89.
  •  M. Cavers and S. Fallat, Allow problems concerning spectral properties of patterns, Electronic Journal of Linear Algebra, Vol. 23 (2012), 731-754.
  •  M. Cavers, S. Cioaba, S. Fallat, D. Gregory, W. Haemers, S. Kirkland, J. McDonald and M. Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra and its Applications, Vol. 436 (2012), 4512-4529.
  •  R. Bailey, A. Burgess, M. Cavers and K. Meagher, Generalized covering designs and clique coverings, Journal of Combinatorial Designs, Vol. 19, Issue 5 (2011), 378-406.
  •  M. Cavers, S. Fallat and S. Kirkland, On the normalized Laplacian energy and general Randic index R-1 of graphs, Linear Algebra and its Applications, Vol. 433, Issue 1 (2010), 172-190.
  •  M. Cavers, On reducible matrix patterns, Linear and Multilinear Algebra, Vol. 58, Issue 2 (2010), 257-267.
  •  M. Cavers, K. Vander Meulen and L. Vanderspek, Sparse inertially arbitrary patterns, Linear Algebra and its Applications, Vol. 431, Issue 11 (2009), 2024-2034.
  •  M. Cavers, R. Elzinga, D. Gregory, S. Vanderlinde and K. Vander Meulen, Clique partitions of distance multigraphs, Discrete Mathematics, Vol. 308, Issue 15 (2008), 3230-3240.
  •  M. Cavers and J. VerstraĆ«te, Clique partitions of complements of forests and bounded degree graphs, Discrete Mathematics, Vol. 308, Issue 10 (2008), 2011-2017.
  •  M. Cavers and K. Vander Meulen, Inertially arbitrary nonzero patterns of order 4, Electronic Journal of Linear Algebra, Vol. 16 (2007), 30-43.
  •  M. Cavers, I-J Kim, B. Shader and K. Vander Meulen, On determining minimal spectrally arbitrary patterns, Electronic Journal of Linear Algebra, Vol. 13 (2005), 240-248.
  •  M. Cavers and K. Vander Meulen, Spectrally and inertially arbitrary sign patterns, Linear Algebra and its Applications, Vol. 394 (2005), 53-72.

OTHER ARTICLES / CONTRIBUTIONS
  •  Book chapters/contributions: Calculus: Early Transcendentals (David Guichard with contributions from various authors), Creative Commons License, April 2014. Edited chapters 1 to 9 with the creation of new content and images.
  •  M. Cavers and K. Vasudevan, An Application of Markov Chains in Seismology, IMAGE - The Bulletin of the International Linear Algebra Society (ILAS),  Issue 51 (Fall 2013), 13-18.